Physics Constants & Extended Newtonian/General Reference

Fundamental Constants (SI)

rounded for readability
QuantitySymbolValueUnit
Speed of light$c$$2.99792458\times10^8$m s$^{-1}$
Gravitational constant$G$$6.67430\times10^{-11}$m$^3$ kg$^{-1}$ s$^{-2}$
Planck constant$h$$6.62607015\times10^{-34}$J s
Reduced Planck$\hbar$$1.054571817\times10^{-34}$J s
Elementary charge$e$$1.602176634\times10^{-19}$C
Boltzmann$k_B$$1.380649\times10^{-23}$J K$^{-1}$
Avogadro$N_A$$6.02214076\times10^{23}$mol$^{-1}$
Vacuum permittivity$\varepsilon_0$$8.8541878128\times10^{-12}$F m$^{-1}$
Vacuum permeability$\mu_0$$1.25663706212\times10^{-6}$N A$^{-2}$
Standard gravity$g_0$$9.80665$m s$^{-2}$

Kinematics & Newtonian Mechanics (Comprehensive)

Linear & Projectile Motion
$v=v_0+at$, \; $x=x_0+v_0 t+\tfrac12 a t^2$, \; $v^2=v_0^2+2a\,\Delta x$, \; $\Delta x=\tfrac{(v+v_0)}{2}t$
Projectile: $x=v_0\cos\theta\,t$, \; $y=v_0\sin\theta\,t-\tfrac12 g t^2$; \; $R=\dfrac{v_0^2\sin2\theta}{g}$; \; $H=\dfrac{v_0^2\sin^2\theta}{2g}$; \; $t_f=\dfrac{2v_0\sin\theta}{g}$
Circular & Rotational
$a_c=\dfrac{v^2}{r}=\omega^2 r$, $v=\omega r$, $T=\dfrac{2\pi}{\omega}$\; /\; $\omega=\omega_0+\alpha t$, $\theta=\theta_0+\omega_0 t+\tfrac12\alpha t^2$, $\omega^2=\omega_0^2+2\alpha\,\Delta\theta$
Torque $\tau=\vec r\times\vec F$, $\sum\tau=I\alpha$; \; $L=I\omega$, $\tfrac{d\vec L}{dt}=\sum\tau$; \; $K=\tfrac12 m v^2+\tfrac12 I\omega^2$; Parallel‑axis $I=I_\text{CM}+Md^2$
Work, Energy, Power; Momentum & Collisions
$W=\int \vec F\cdot d\vec r$, $K=\tfrac12 m v^2$, $U=mgh$ (near Earth), $W_{\text{net}}=\Delta K$, $P=\dfrac{dW}{dt}=\vec F\cdot\vec v$
$\vec p=m\vec v$, $\vec J=\int \vec F\,dt=\Delta\vec p$; perfectly inelastic $v_f=\dfrac{m_1v_1+m_2v_2}{m_1+m_2}$
Gravitation & Orbits
$F=G\dfrac{m_1m_2}{r^2}$, $U=-G\dfrac{Mm}{r}$, $v_\text{esc}=\sqrt{\dfrac{2GM}{r}}$, circular $v=\sqrt{\dfrac{GM}{r}}$, $T=2\pi\sqrt{\dfrac{r^3}{GM}}$
Vis‑viva: $v^2=GM\left(\dfrac{2}{r}-\dfrac{1}{a}\right)$; Kepler 3rd: $T^2=\dfrac{4\pi^2}{GM}a^3$ (for $M\gg m$)

Fluids — Bernoulli & Continuity

Ideal, incompressible, steady flow
Continuity: $A_1 v_1 = A_2 v_2$ (incompressible 1‑D streamtube)
Bernoulli: $\underbrace{p}_{\text{static}}+\underbrace{\tfrac12\rho v^2}_{\text{dynamic}}+\underbrace{\rho g h}_{\text{hydrostatic}}=\text{const along streamline}$
Useful results
Torricelli efflux: $v_\text{out}=\sqrt{2g\,\Delta h}$; Dynamic pressure: $q=\tfrac12\rho v^2$; Venturi: $\Delta p=\tfrac12\rho (v_2^2-v_1^2)$
Reynolds number: $\mathrm{Re}=\dfrac{\rho v D}{\mu}$ (laminar $\lesssim 2300$)

Thermodynamics & Basic Chemistry

Gas Laws
Ideal gas: $pV=nRT=Nk_B T$; \; Boyle: $p\propto 1/V$ (isothermal); \; Charles: $V\propto T$ (isobaric); \; Gay‑Lussac: $p\propto T$ (isochoric)
Dalton partial pressures: $p_\text{tot}=\sum_i p_i$ with $p_i=\chi_i p_\text{tot}$; \; van der Waals (real gas): $\left(p+\dfrac{a n^2}{V^2}\right)(V-nb)=nRT$
Stoichiometry & Solutions
Amount: $n=\dfrac{m}{M}$ (mass / molar mass); \; Molarity: $M=\dfrac{n}{V}$ (mol L$^{-1}$)
pH: $\mathrm{pH}=-\log_{10}[\mathrm{H}^+]$, \; $K_w=[\mathrm{H}^+][\mathrm{OH}^-]=10^{-14}$ (25°C)

Metric (SI) Prefixes

PrefixSymbolFactorPrefixSymbolFactor
yottaY$10^{24}$yoctoy$10^{-24}$
zettaZ$10^{21}$zeptoz$10^{-21}$
exaE$10^{18}$attoa$10^{-18}$
petaP$10^{15}$femtof$10^{-15}$
teraT$10^{12}$picop$10^{-12}$
gigaG$10^{9}$nanon$10^{-9}$
megaM$10^{6}$microµ$10^{-6}$
kilok$10^{3}$millim$10^{-3}$
hectoh$10^{2}$centic$10^{-2}$
decada$10^{1}$decid$10^{-1}$

Astronomy — Handy Values & Relations

Distances
1 AU$1.496\times10^{11}$ m
1 light‑year$9.461\times10^{15}$ m
1 parsec$3.086\times10^{16}$ m (3.26 ly)
Solar/Earth
Solar mass $M_\odot$$1.989\times10^{30}$ kg
Solar radius $R_\odot$$6.957\times10^8$ m
Earth mass $M_\oplus$$5.972\times10^{24}$ kg
Earth radius $R_\oplus$$6.371\times10^6$ m
Key relations
Kepler 3rd (two‑body, $M\gg m$): $T^2=\dfrac{4\pi^2}{GM}a^3$; \; Wien’s law: $\lambda_{\max}\,T\approx 2.898\times10^{-3}$ m·K; \; Magnitudes: $m_2-m_1=-2.5\log_{10}(F_2/F_1)$

Subatomic Particles (basic)

ParticleSymbolChargeMass (kg)Mass (MeV/$c^2$)
Electron$e^-$$-1e$$9.109\times10^{-31}$0.511
Proton$p$$+1e$$1.673\times10^{-27}$938.27
Neutron$n$0$1.675\times10^{-27}$939.57
Alpha$\alpha$ ($^4$He$^{2+}$)$+2e$$6.645\times10^{-27}$3727.38

Water — Common Properties

PropertySymbolValue (approx.)Units
Density (4°C)$\rho$1000kg m$^{-3}$
Specific heat (25°C)$c_p$4184J kg$^{-1}$ K$^{-1}$
Latent heat of fusion$L_f$$3.34\times10^{5}$J kg$^{-1}$
Latent heat of vaporization (100°C)$L_v$$2.26\times10^{6}$J kg$^{-1}$
Boiling point (1 atm)100°C
Freezing point (1 atm)0°C
Clausius–Clapeyron (approx.)
$\dfrac{d\ln p}{dT}=\dfrac{L}{RT^2}$ (phase‑change regions)

Conversions — Common Factors

FromToFactor
eVJ$1.602176634\times10^{-19}$
cal (thermochemical)J4.184
atmPa$1.01325\times10^{5}$
barPa$1\times10^{5}$
TorrPa133.322
°CK$T[\mathrm K]=T[°\mathrm C]+273.15$
°F°C$(T-32)/1.8$
FromToFactor
degrad$\pi/180$
mphm s$^{-1}$0.44704
km h$^{-1}$m s$^{-1}$0.27778
gaussTesla$10^{-4}$
Åm$10^{-10}$
u (amu)kg$1.66053906660\times10^{-27}$

Common Angles — Sine/Cosine/Tangent

DegreesRadians$\sin$$\cos$$\tan$
$0$010
30°$\pi/6$$1/2$$\sqrt3/2$$1/\sqrt3$
45°$\pi/4$$\sqrt2/2$$\sqrt2/2$1
60°$\pi/3$$\sqrt3/2$$1/2$$\sqrt3$
90°$\pi/2$10